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Abstract
In the current rapid evolution of generative AI, Agentic AI is becoming a key paradigm for automating

complex tasks and human-machine collaboration with its closed-loop mechanism of “autonomous perception
- planning - decision-making - execution - learning.” However, existing frameworks mostly encapsulate
various functional modules within a single runtime or platform, leading to a high degree of coupling in data
formats, communication protocols, and permission models. Once there is a need to cross frameworks like
LangChain, AutoGen, CrewAI, or to collaborate between cloud services, local processes, and blockchain
contracts, developers must rewrite adaptation layers and maintain multiple sets of state synchronization
logic, severely restricting the composability, maintainability, and secure and trustworthy interaction of
agents.

To break this bottleneck, B2 Network proposes the Decentralized Signal-Driven Network for
Modular and Agentic Artificial Intelligence (DSN-AI), leveraging its Bitcoin-secured Rollup
infrastructure. DSN-AI abstracts a type of on-chain Signal: each Signal carries a type, Schema hash,
payload, timestamp, and signature, which can be written with high throughput on the B2 Rollup and
anchored to Bitcoin via the B2 Hub, achieving global consistency, immutability, and verifiability. Signals
become the sole contract between heterogeneous Agents: any cloud, private, or edge Agent can be
dynamically discovered by simply publishing a “capability Signal,” and collaboration can be triggered
by sending new Signals. User goals are transformed by the LLM planner into an event-directed graph
managed by LangGraph; the embedded sparse MoE Dispatcher dynamically selects the optimal expert
chain for each Signal, enabling fine-grained, on-demand specialized reasoning without touching downstream
modules.

Based on "Signal + LangGraph + LangChain tools + Mixtral-MoE," the DSN-AI not only provides
a unified, verifiable, and asynchronous communication protocol but also brings true modularity and
hot-swappable capabilities to agent-based artificial intelligence, laying the foundation for a more open,
secure, and intelligent multi-agent ecosystem.
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Introduction
Background and Motivation
In the past decade, the breakthrough advancements in large language models (LLMs) have greatly enhanced
the level of natural language understanding and generation, making “software driven by language” possible. At
the same time, the potential of multi-agent collaboration (Multi-Agent Systems, MAS) in task decomposition,
automated operations, and complex decision-making has been continuously validated, giving rise to a new
paradigm called Agentic AI—which combines the generalized reasoning capabilities of LLMs with the
specialized toolchains of modular agents, completing dynamic complex tasks through a “think-act-reflect”
cycle.

∗May 13, 2025, v0.0.1
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However, when researchers and developers attempt to push Agentic AI towards production-level applications,
they commonly encounter three bottlenecks:

1. Coupling Bottleneck

Existing frameworks (such as LangChain, AutoGen, CrewAI, etc.) each define their own tool encapsula-
tion, memory formats, and execution contexts, leading to a lack of unified communication protocols and
authentication mechanisms between agents. When cross-framework collaboration is needed, developers
are forced to maintain multiple sets of adapters and state synchronization logic, resulting in a sharp
increase in system evolution costs.

2. Trustworthiness Bottleneck

Most agent invocation chains operate within a single trust domain, lacking auditable and traceable
execution records. In scenarios requiring compliance proof, financial settlement, or IoT control, the
absence of unified identity authentication and tamper-proof result guarantees keeps the risks of large-scale
deployment high.

3. Intelligent Evolution Bottleneck

As task complexity continues to increase, the existing single LLM or fixed processes struggle to meet the
dual demands of real-time performance and professional depth. There is an urgent need to seamlessly
integrate more expert models, private APIs, or edge devices, but traditional centralized coordination
methods cannot support the high-frequency asynchronous event flow.

B2 Network, anchored to the Bitcoin mainnet and aimed at composable finance and computing, inherently
possesses advantages of high security, global accessibility, and scalable data availability layers. Therefore, we
propose the Decentralized Signal-Driven Network for Modular and Agentic Artificial Intelligence
(DSN-AI), which elevates on-chain “events” to Signals with signatures, schemas, and timestamps, thereby
constructing a unified, verifiable, and asynchronous agent communication bus. Specifically:

• Decentralized Trustworthy Timeline: All Signals are first written to the B2 Rollup and submitted
to Bitcoin via the B2 Hub, combining the irreversible UTXO ledger to provide globally synchronized
causal order and tamper-proof auditing.

• Composable Module Interface: Signals only define a three-part contract of “type + payload schema
+ signature,” allowing any agent—whether running on cloud clusters, private servers, or local devices—to
announce the types of events they can handle by publishing “capability signals,” achieving plug-and-play
modular collaboration.

• Intelligent Routing and Load Balancing: Based on the LangGraph event graph and sparse MoE
Dispatcher, the LLM planner can select the best expert model on demand and decompose tasks into
parallel executable Signal DAGs, thereby enhancing system throughput and intelligence while ensuring
consistency.

DSN-AI aims to provide a “low-coupling, high-trust, easy-evolution” foundational communication layer for
Agentic AI, allowing developers to focus on business logic and model innovation without repeatedly addressing
cross-framework interoperability and security auditing issues.

Mission and Vision
• Mission

The core mission of DSN-AI is to enable developers, enterprises, and individual users around the
world to build, deploy, and interconnect AI Agents with unprecedented security, interoperability, and
composability through a decentralized, verifiable Signal protocol. We are committed to: 1) providing
traceable and tamper-proof execution logs for all Agent actions anchored at Bitcoin-level security;
2) replacing fragmented API adaptation layers with a minimal, unified Signal contract to lower the
collaboration threshold across frameworks; 3) unleashing the parallel and real-time response potential
of Agents through an asynchronous event-driven model, allowing them to operate safely in high-risk
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scenarios such as finance, industry, research, and public services; 4) building an open community and
economic incentives to encourage more expert models and tools to be packaged as subscribable capability
Signals, forming a positive feedback loop.

• Vision

The future we envision is a decentralized intelligent grid composed of countless professional Agents:
robots can subscribe to maintenance signals in real-time on factory floors, financial algorithms share
market insights on-chain, personal assistants execute home commands securely in local private domains,
and all information flows freely, auditable, and composable through the DSN-AI Signal bus. At that time,
developers will no longer be limited to specific cloud platforms, model researchers can seamlessly inject
the latest MoE experts into global task flows, and end users will gain data control focused on privacy
and sovereignty. We believe that DSN-AI will become the next generation “public communication layer”
connecting humans and machine intelligence, laying a trustworthy, open, and shared foundation for
autonomous AI ecosystems, just as the internet did for information and Bitcoin did for value.

Signal Network Model
Definition and Data Structure

• Definition

Signal is the core primitive of DSN-AI: a Signal consists of fields such as “type code + schema hash +
payload + timestamp + signature,” and is recorded on the B2 Rollup, ultimately anchored to Bitcoin L1,
thus possessing global consistency, immutability, and verifiability. It serves as both a communication
contract—any heterogeneous agent in cloud, private servers, or local devices can complete service
discovery and event routing simply by publishing a “capability Signal”; and as an identity and audit
credential, providing execution traceability and causal ordering through ECDSA signatures and an
on-chain timeline. For data streams or decision results with economic value, a Signal can also upgrade
to a paid Signal: the publisher embeds payment conditions and encrypted key indexes in the payload,
and subscribers must first complete on-chain micropayments or zero-knowledge commitments to unlock
the symmetric key and read the encrypted payload, achieving cryptographic secure paid subscriptions.
This allows modules for perception, planning, decision-making, execution, and learning to be freely
combined in a hot-swappable manner across frameworks and platforms, while also giving rise to a new
data/model-as-a-service economy.

• Data Structure

On-chain Data Structure of Signal

Field Name Type Required Function Description

version uint8 Y Protocol Version Convenient for
forward
compatibility;
currently fixed to
0x01

type bytes4 Y Event Type Code 32-bit integer,
identified in
hexadecimal, e.g.,
0x504C4E=PLAN,
0x584543=EXEC
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Field Name Type Required Function Description

schema_hash bytes32 Y Payload Mode
Hash

Perform
Keccak-256 on
JSONSchema /
Protobuf IDL;
ensure consistent
parsing across
different Agents

payload bytes <= 65536 Y Business data Serialized
according to
schema_hash
corresponding
pattern; optional
GZIP compression

timestamp uint64 Y Millisecond
timestamp

Unix epoch ms;
used for causal
ordering and
replay protection

nonce uint64 Y Initiator’s local
counter

Incremented for
the same issuer to
prevent hash
prefix collisions

issuer bytes20 Y Initiator Identifier B2 Rollup
Account Address

sig bytes65 Y Digital Signature secp256k1
(ECDSA):
r(32)‖s(32)‖v(1)

pay_info bytes N Payment
subscription
information

Appears only in
paid Signal.
Structure: {price,
denom, pay_to,
enc_key_cid}

ttl uint32 N Time to Live
(seconds)

Router can
discard after
expiration; reduce
indexing burden

meta bytes N Custom Metadata For example, Gas
budget, priority,
IPFS CID, ZK
proof

• Field Supplementary Explanation

1. Sig

• sig: Digital Signature, secp256k1 (ECDSA): r(32)‖s(32)‖v(1); Sign the continuous bytes of ver-
sion‖type‖schema_hash‖payload‖timestamp‖nonce‖issuer

2. Payable Signal
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• pay_info.price: Micro payment amount in wei/satoshi

• pay_info.denom: ETH / BTC / On-chain ERC-20 address

• pay_info.pay_to: Receiving address; can be different from issuer

• pay_info.enc_key_cid: Points to the symmetric key stored in IPFS/Arweave (can be decrypted
after payment by the receiver using Proxy Re-Encryption or ECDH)

3. Payload Encryption

• Default plaintext; if schema_hash is marked as “encrypted” with the highest bit 1, then the payload
is AES-GCM ciphertext, and the encryption algorithm and KEK index are stored in meta

• Decryption process: Subscriber pays -> Obtain KEK -> Decrypt symmetric key -> Decrypt
payload

4. Topic Calculation and Subscription

• Dispatcher uses topic = keccak160(type‖schema_hash) to generate a 20-byte topic; Agent can
subscribe to multiple topics at once. Bloom Filter for quick matching, complete index in LevelD-
B/RocksDB.

On-chain Encoding and Storage Hierarchy

Level Encoding Format Key Operations

B2 Rollup RLP variable-length encoding Write transaction calldata; VM
pre-sign sig then write State tree

B2 Hub -> Bitcoin SHA-256 Merkle root Every N Rollup blocks aggregate
root hash written to a single
OP_RETURN; main chain only
retains 80 bytes

Off-chain index node LevelDB / RocksDB Quickly index and match using
Bloom Filter in a topic-based
manner

Example JSON (Paid Signal)

1 {
2 "ver": 1,
3 "type": "0x444154", // DAT: data release
4 "schema_hash": "0xb3f2...c41e",
5 "payload": "0x1f8b08...", // GZIP + AES-GCM Encrypted Data
6 "timestamp": 1715162045123,
7 "nonce": 128,
8 "issuer": "0x5e74fa8d9f4c71e1d046",
9 "sig": "0xa69c...7b",

10 "pay_info": {
11 "price": "1000000000000000000", // 1B2
12 "denom": "B2",
13 "pay_to": "0x1234...abcd",
14 "enc_key_cid": "bafybeiabc...xyz"
15 },
16 "ttl": 86400,
17 "meta": "0x7b22706b223a20224145532d47434d227d" // {"pk": "AES-GCM"}
18 }
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• Core Function Summary

1. Unified Protocol Layer: Replaces proprietary APIs of various frameworks with fixed field definitions
to achieve cross-platform collaboration.

2. Secure and Trustworthy: On-chain timestamps + signatures + Bitcoin anchoring provide tamper-
proof and traceable auditing.

3. Economic Incentives: Supports paid subscriptions for data/model as a service through embedded
micropayment logic in the pay_info field.

4. Extensible: Reserves extension fields such as meta and ttl, supporting ZK proofs, gas policies, and
priority scheduling.

This data structure ensures the interoperability and security of signal interactions while leaving ample room
for future cryptoeconomic models and new Agent functionalities.

Payable Signal
Allows any producer Agent to issue a “payable Signal” for high-value data/model results, where consumer
Agents can only obtain the decryption key and read the payload after completing on-chain payment; the
entire process requires no trust in third parties and can be audited within the secure boundary of B2 Rollup
-> Bitcoin.

1. Core Roles

Role Description

Producer Agent (P) Generates high-value data or model results and
publishes Payable Signal

Consumer Agent (C) Subscribe to the specified Signal, confirm the
price, complete the payment, and decrypt

Payment Contract (PC) Standard payment contract deployed on B2
Rollup; supports B2/BTC/Stablecoin

Re-Encryption Service (RES) Decentralized Proxy Re-Encryption node set
(reusable NuCypher/Kokonut); re-encrypted for
payers after symmetric key unlock

Signal Dispatcher (SD) Responsible for routing and event indexing;
unaware of encrypted payloads

2. Encryption and Key Management

1. Content Encryption

• P generates a random symmetric key k_s (256-bit) and encrypts the original payload using
AES-GCM: cipher = Enc_AES(k_s, payload).

2. Key Encapsulation

• P generates a temporary EC key pair (ePub, ePriv).

• Using a consumer-verifiable KP-ABE directed policy: perform Proxy Re-Encryption sharding
on (k_s) (KFrags).

• Generate capsule = ECIES_Enc(ePub, k_s) and hand over the transformation parameters of
the capsule to the RES node for storage.

3. Metadata Embedding
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• Write into Signal’s pay_info: {price, denom, pay_to, capsule_cid, ePub}.

• capsule_cid points to the key encapsulation fragment file on IPFS / Arweave.

Cryptographic Principles:

• AES-GCM provides confidentiality + integrity (GCM Tag).

• ECIES (secp256k1) generates a one-time encapsulation, ensuring that k_s cannot be recovered by
anyone other than the legitimate payer.

• Proxy Re-Encryption (e.g., Umbral) allows the key authority to be redirected from P to the
completing payer C without exposing k_s; the RES node can only re-encrypt after receiving KFrag.

3. Payment Process

1. Price Negotiation (Optional)

• C listens for Payable Signal, reads price and denom; if accepted -> continue

2. On-chain Payment

• C calls Payment Contract.pay(signal_id, amount); PC will lock the funds and emit a Pay-
mentConfirmed event (including payer, signal_id, tx_hash)

3. Zero-Knowledge Payment Proof (Optional)

• If the amount should not be disclosed, ZK-SNARK (Groth16) can be used to submit: proof =
zkPay(amount, signal_id); PC only verifies proof, does not display amount

4. Payment Completion Notification

• P or RES listens for PaymentConfirmed -> emits payment.received Signal

4. Key Re-encryption & Decryption

1. Re-encryption Authorization

• Once P receives payment.received Signal, it sends a ReKey request to the RES node, along
with (signal_id, payer_pubkey)

• RES re-encrypts the capsule to C according to the stored KFrag => obtains re_capsule

2. Key Recovery

• C downloads re_capsule, calls ECIES_Dec(payer_priv, re_capsule) => k_s

• Use k_s to decrypt cipher, obtaining the original payload

3. Integrity Check

• Verify with AES-GCM Tag; if passed -> C sends action.completed Signal, carrying the result
or commitment

5. Data Structure Supplement

1 {
2 // ...Core fields omitted
3 "pay_info": {
4 "price": "1000000000000000000", // 1B2
5 "denom": "B2",
6 "pay_to": "0x1234...abcd", // PaymentContract address
7 "capsule_cid": "bafybeihash...", // where original capsule stored
8 "epub": "0x04ab...31" // producer ephemeral pubkey
9 },

10 "meta": {
11 "enc_alg": "AES-GCM-256",
12 "pre_scheme": "Umbral",
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13 "zk_mode": true
14 }
15 }

Event Lifecycle
The lifecycle of a Signal follows seven stages: “Generation -> On-chain Publication -> Network Propagation
-> Subscription Routing -> Consumption Execution -> Result Backlinking -> Archiving Expiration.” Each
stage establishes clear responsibility boundaries between B2 Rollup and off-chain routing nodes, ensuring the
traceability, eventual consistency, and recoverability of errors in events.

1. Generation

• Trigger Source: Can be triggered by LLM Planner, external sensors, timers, or user requests.

• Payload Packaging: Serialize the payload according to the schema specifications from the previous
section; if it is encrypted/paid data, complete AES-GCM encryption and pay_info construction
synchronously.

• Field Filling: Generate timestamp, nonce, and call the signing module to obtain sig, thus forming
a complete Signal JSON/CBOR object locally.

2. On-chain Publication

• On-chain Transaction: The Producer encodes the Signal in RLP and writes it as calldata into a
Rollup transaction, paying the minimum Gas; in bulk scenarios, it can be packaged in batches.

• Transaction Verification: The Rollup VM verifies sig and nonce; if it fails, the entire transaction
rolls back.

• Block Archiving: Successful transactions enter the Rollup block; every N blocks, a root hash
is packaged and written to Bitcoin L1’s OP_RETURN via B2 Hub, obtaining an immutable
timestamp.

3. Network Transmission (Broadcast)

• P2P Distribution: The Rollup consensus layer pushes new blocks to all network nodes.

• Index Node: Dedicated Dispatcher nodes listen to the block stream, parse Signals, and store them
in local LevelDB / RocksDB.

• Topic Filtering: Maintain a Bloom Filter to accelerate matching based on topic = kec-
cak160(type‖schema_hash).

4. Subscription Routing (Route)

• Capability Discovery: All online Agents publish CAP capability Signals upon startup, declaring
supported Topics, priorities, and callback URLs.

• Matching Mechanism: When the Dispatcher receives a new Signal, it asynchronously pushes events
into the corresponding queue according to the (Topic -> Subscribers) reverse index; if it is an
encrypted Signal, only the ciphertext and Capsule reference are transmitted.

• Retry and QoS: For HTTP or gRPC callback failures, exponential backoff is used for retries; if it
exceeds TTL, it is automatically discarded and a signal.expired event is emitted.

5. Consumption Execution (Consume)

• Agent Parsing: After receiving an event, the subscriber first compares the schema_hash; if there is
no corresponding Schema locally, it pulls updates from the Registry.

• Access Control: If it is a paid Signal, the payment status is checked first; unpaid Signals enter a
pending queue.
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• Business Processing: Call the toolchain or local model for execution, generating output and status
locally.

• Off-chain Result Caching: Large output files can be uploaded to IPFS and the CID recorded.

6. Result Acknowledgment (Acknowledge)

• After processing, the consumer generates a confirmation Signal with type = 0x584543 (EXEC) or
another agreed type, where the payload includes fields such as task_id, status, output_cid, etc.,
and republishes it to the Rollup. At this point, the original initiator or coordinating LLM can
obtain the results through subscription and enter the next planning round.

7. Archiving and Expiration (Archive / Expire)

• TTL Expiration: The Dispatcher regularly scans the local index, and Signals that have not been
consumed or paid for after timeout trigger a signal.expired receipt.

• Cold Storage: Rollup full nodes can choose to retain only the Merkle proof of old block Signals,
with detailed content handed over to decentralized storage (Arweave/Filecoin).

• Error Handling: In the event of chain reorganization or double signing, Rollup provides a rewind
mechanism; the Dispatcher rolls back the local index based on block height and repushes.

Summary: This lifecycle design combines an immutable on-chain timeline with a high-performance off-chain
push system, ensuring global consistency while balancing low latency and high throughput, and providing
production-oriented robustness through mechanisms such as retries, TTL, and receipts.

Security and Verifiability Mechanisms
The security model of the Signal network is divided into four complementary layers: on-chain authenticity
assurance, off-chain transmission integrity, economic incentives and anti-malicious mechanisms, and privacy
and access control.

1. Identity Authentication and Non-repudiation

• Initiator Signature: Each Signal is signed using the issuer’s private key on the “core seven fields”
with ECDSA (secp256k1), and the Rollup VM verifies it instantly during the transaction execution
phase; any forgery will be rejected from being written into the state tree.

• Bitcoin Anchoring: The B2 Hub writes the Rollup block Merkle root into Bitcoin OP_RETURN;
forging history would require rolling back Bitcoin PoW, with costs consistent with the mainnet ->
non-repudiation.

• Multi-signature (M-of-N): High-value Signals can embed a threshold Schnorr contract address in
the sig field, requiring multiple signatures before being put on-chain.

2. Data Integrity and Rollback Fault Tolerance

• Merkle Proof: Any third party can verify the existence of a Signal on L1 through (signal_hash,
merkle_path, root_hash).

• Block Rollback: If the Rollup encounters an L2 fork, the rewind protocol can determine the correct
chain based on the Bitcoin anchor, and the Dispatcher node rolls back the index by height and
re-pushes events to ensure eventual consistency.

3. Replay Attacks and Sequential Consistency

• nonce + timestamp dual verification: The nonce of the same issuer is monotonically increasing,
and the timestamp must be within the local block time window; exceeding the window or replaying
is immediately rejected.

• Bloom Filter cache: The Router retains a double-layer Bloom filter of the processed {issuer, nonce}
set to further filter duplicate events.

9



4. Economic Resistance to Spam and DoS Protection

• Gas fees: The publisher must pay a minimum gas fee; large-scale spam sending will directly waste
collateral.

• Minimum staking (optional): Introduce a “staking-penalty” model for high-frequency topics: if an
Agent repeatedly sends invalid Signals and is reported by other nodes, the staked amount can be
forfeited.

• Rate limiting: The Dispatcher sets a leaky bucket rate for a single issuer to prevent off-chain HTTP
DoS.

5. Access Control and ACL

• Capability whitelist: Producers can list allowed issuers or ZKP commitments in the meta.acl field;
the Router filters based on ACL.

• Encrypted subscriptions: Paid Signals are encrypted by default and cannot be read without
payment; for free sensitive data, payload.enc=true + ECDH can be used to encrypt for specific
subscribers.

6. Confidentiality and Paid Unlocking

• AES-GCM + Proxy Re-Encryption: See the previous section on paid design; Producers do not
expose the plaintext; threshold t-of-n RES nodes prevent single point leakage.

• ZK payment proof: If zk_mode=true is enabled, the payment amount and payer can be anonymized,
and the contract only verifies the SNARK proof, ensuring privacy.

7. Verifiable Executable Results (VXE)

• Output commitment: The executing Agent includes output_root (Merkle root) in the confirmed
Signal and uploads complete data to decentralized storage. Other nodes can verify local content
through Merkle proof.

• Zero-knowledge execution proof (optional): For compute-intensive tasks, STARK proofs can be
generated, and their CID written into meta.zk_proof; consumers can trust the results without
recalculating.

8. Protocol Upgrades and Backward Compatibility

• Version field: New version protocols are recognized when the version increases; old nodes encoun-
tering unknown versions can soft reject or downgrade.

• Schema evolution: The schema_hash of different versions must change to avoid misreading by old
parsers; version numbers can be placed in meta.rev to retain multiple versions in parallel.

9. Regulatory & Audit Friendliness

• Traceable full-chain logs: Combined with Bitcoin PoW, auditors only need to trust the minimum
validators to recursively verify the complete event sequence.

• Privacy layering: Public fields are left for regulatory audits, while sensitive business data is hidden
through encryption/ZKP; achieving compliance while maintaining privacy.

Multi-signatures and on-chain timestamps jointly ensure identity authentication and event authenticity;
Merkle proofs combined with Bitcoin PoW anchor completely block tampering; nonce + timestamp dual
sequence mechanism resists replay; gas fees and staking economics incentivize the suppression of spam and
DoS behavior; AES-GCM confidential encapsulation, Proxy Re-Encryption dynamic key transfer, and ZK
payment/execution proofs provide end-to-end privacy protection for sensitive data. The above mechanisms
build a layered security foundation for DSN-AI that is “verifiable, trustworthy, and regulatory compliant.”
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Signal-Driven Agentic AI Introduction and Architecture
Introduction to Signal-Driven Agentic AI

1. Conceptual Origin

Agentic AI is not merely an amplification of the reasoning capabilities of a single large model, but
rather views the “agent” as an autonomous operating unit. Through role differentiation, collaborative
protocols, and feedback loops, multiple entities work together to achieve complex goals. It draws on three
technological lineages: a. Methods from traditional multi-agent systems (MAS) in decentralized task
decomposition and collaborative decision-making; b. The open-domain reasoning and tool invocation
capabilities of large language models (LLM); c. Best practices from DevOps and event-driven architecture
(EDA) in high concurrency and elastic governance. The ultimate vision of Agentic AI is to grant agents
autonomy over the entire process of “perception—planning—execution—learning,” while maintaining
human controllability, enabling them to instantaneously combine external resources and continuously
self-evolve in an open world.

2. Core Operational Loop

Stage Function Typical Technology

Sense Monitor external environment
and internal state, forming
structured observations

Webhook, on-chain events, IoT
data streams, RAG retrieval

Goal Representation Transform human intentions or
system strategies into
decomposable tasks

Natural Language -> JSON
Goal, Knowledge Graph
Constraints

Planning Utilize LLM/Symbolic Planner
to generate subtask diagrams

ReAct Prompt, LangChain
Plan-and-Execute, HTN

Decision Choose execution path among
various tools/experts

MoE Router, Bandit strategy,
Multi-armed bandit

Action Execution (Act) Call API, write chain, control
robot, etc.

LangChain Tool, function call,
microservice RPC

Feedback Learning (Learn) Update model or strategy based
on result feedback

RLHF, RLAIF, online
fine-tuning, memory
vectorization

This closed loop follows the “Thought -> Action -> Observation -> Update” cycle; the LLM plays the
core role of “thinking” and “planning” in the cycle, while other lightweight agents are responsible for
specific perception and execution.

3. Modular Layered Architecture

• Decoupling Key Point: Layers communicate only through standardized signals, allowing any module
to be hot-swappable; upgrading the planner or replacing a specific execution agent does not affect
the overall system.

• Intelligence Key Point: The L2 layer has a built-in MoE Dispatcher that automatically switches
between financial experts, programming experts, or legal experts when the task domain changes,
ensuring decision quality and efficiency.

• Flexibility Key Point: Based on event-driven architecture, the execution layer can operate asyn-
chronously in parallel; a large number of long-tail tasks can be distributed and queued, avoiding
blocking the LLM’s main loop.
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4. Mapping Relationship with Existing Architecture

Agentic AI Module LangGraph/LangChain Role Signal Trigger Point

Perception Agent Runnable/Fn-Node sensor.update

Planning Agent Graph Planner Node plan.generated

Decision Router RouterChain / MoE LLM router.choice

Execution Agent Tool / Sub-Crew / RPC Action Request

Results Report N/A (Custom) Action Completed

Feedback Learning Memory + RLAIF Updater learn.update

This mapping means that the existing LangChain toolchain can be seamlessly migrated; Python functions
and microservices that do not use LangChain can also implement the Signal interface through a simple
HTTP endpoint.

5. Intelligent Enhancement Mechanism

• Expert Mixture (MoE)

Using Mixtral-8×7B or DeepSpeed-MoE, the Router selects 2-3 best experts for each sub-task,
allowing the system to achieve higher inference depth without a significant increase in marginal
computation.

• Learnable Memory

Signals flow into a vector database (such as Chroma), where the LLM retrieves historical context
to reduce repetitive decisions; the learning layer updates reward weights based on successful/failed
signals, achieving task adaptability.

• Strategy Search

The planning layer maintains a candidate DAG set and uses multi-armed bandit to select branches;
it explores unknown tasks first and then exploits.

• Safety Guard

The global Guardrail Agent subscribes to all execution requests and performs static/dynamic
analysis based on policies or LLM safety filters to prevent overreach and high-risk operations.

6. Comparison with Centralized LLM “Behemoth” Solutions

Dimension Centralized Large Model Signal-Driven Agentic AI

Upgrade Cost Requires complete
retraining/deployment

Single Agent can be
independently hot updated

Heterogeneous Tools Need to Write Prompt Hack Plug and Play via Tool Adapter

Reliability Single Point of Failure Task-level Redundancy,
Substitute Agent

Security Internal black box, difficult to
audit

Signal leaves traces on-chain,
easy to comply with audits

Business Expansion Linear stacking, high cost On-demand increase or decrease
of Agents, microservices-based
scaling
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Through the above hierarchical and event-driven design, Signal-Driven Agentic AI has evolved from “a
huge prompt” or “a single blockchain oracle” into an orchestrated, auditable, and commercially viable
autonomous intelligent orchestration network, laying the technological foundation for the next generation
of open, trustworthy, and human-machine collaborative new infrastructure.

Role Hierarchy (Perception, Planning, Decision-Making, Execution, Learning)
In the DSN-AI system, role hierarchy is not a hard-coded process, but a set of loosely coupled autonomous
functional domains through Signal agreements. Each layer can be undertaken by one or more heterogeneous
agents, achieving “horizontal scalability and vertical replaceability.” Below, the responsibilities, inputs and
outputs, typical implementations, and performance highlights are elaborated across five layers.

Perception Layer

0.0.0.1 Responsibilities Responsible for transforming external changes—blockchain events, Web APIs,
IoT sensors, database triggers, etc.—into standardized sensor.update Signals. The perception layer serves as
the system’s “eyes and ears,” determining the real-time sensitivity and data breadth of Agentic AI to the
environment.

0.0.0.2 Typical Implementations

• On-chain Listening Agent: Captures price fluctuations, NFT minting, and other events using
eth_subscribe or ERC-20, ERC-721 indexers.

• Web Crawler Agent: Utilizes asynchronous crawling + natural language cleaning to write news or social
media sentiment summaries into the payload.

• Industrial Sensor Agent: Operates at the factory edge gateway, reading OPC-UA or Modbus streams
and writing to encrypted payloads.

Planning Layer

0.0.0.3 Responsibilities Based on user intent or system strategy, decomposes high-level goals into
executable subtask DAGs, where each node serves as a “blueprint” for subsequent Signals. The planning layer
acts like a project manager, creating roadmaps for multi-agent collaboration.

0.0.0.4 Typical Implementations

• LLM Planner: Uses ReAct Prompt + LangChain Plan-and-Execute, combined with contextual memory
to output plan.generated Signals.

• Symbolic Planner: In logistics scenarios, inputs goals and constraints using PDDL/HTN, outputting
structured plans.

• Hybrid: Initially drafted by LLM, then verified for feasibility using constraint solvers (CSP/SAT).

Decision Layer

0.0.0.5 Responsibilities Real-time routing and scheduling among multiple optional tools, expert models,
or external services. The decision layer is the system’s “prefrontal cortex,” determining which resource best
matches the current sub-task.

0.0.0.6 Typical Implementations

• MoE Dispatcher: Uses Mixtral-8×7B to sink token-level routing into the model, suitable for natural
language inference.

• RouterChain: External routing based on LangChain, reads Signal payload metadata (domain tags,
priority, budget) to select downstream Agents.
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• Bandit-Learner: Conducts A/B exploration of parallel candidate execution paths, gradually adjusting
probability distributions.

0.0.0.7 Decision Benchmarks

• Cost (Gas, API fees, latency)

• Success Rate (historical Signal action.completed success markers)

• Reputation (on-chain staking + community ratings)

• Privacy Level (whether TEE or local execution is required)

Execution Layer

0.0.0.8 Responsibilities Truly produce side effects on the external world: writing to the chain, calling
REST, triggering robotic actions, updating databases, etc. The execution layer is the system’s “muscles and
limbs.”

0.0.0.9 Execution Protocol

• Receive action.request Signal -> Validate ACL / payment status -> Execute -> Generate
action.completed or action.failed Signal.

• For long transactions, progress can be reported in stages (action.step).

0.0.0.10 Typical Implementations

• Smart Contract Execution Agent: Multi-signature wallets, flash loans, NFT minting, etc.

• Local Script Agent: Python/Golang scripts automatically deploy microservices in a DevOps environment.

• Robotic Agent: ROS interface and PLC control to execute production line actions.

Learn Layer

0.0.0.11 Responsibilities Conduct post-analysis of the entire Signal flow, adjusting model weights,
routing probabilities, and strategies. The learn layer serves as the system’s “long-term memory and feedback
loop.”

0.0.0.12 Combination Modules

• Memory Store: Stores key context in vector or key-value format, achieving small-sample memory.

• Reward Evaluator: Calculates scalar reward R based on status, latency, and cost.

• Strategy Optimizer: Makes REINFORCE / PPO adjustments to MoE Router or Bandit distribution.

• Version Governance: Compares new weights with old versions and gradually switches through A/B
Signal flow.

0.0.0.13 Decentralized Learning Path

• On-chain RLHF Records: Reward R is written into Bitcoin anchoring through B2 Network, ensuring
training logs are immutable.

• Distributed Fine-tuning: Uses LoRA + Off-Chain Storage to share ∆Weight, avoiding full model
on-chain.

• Knowledge Extraction: Extracts high-value Signal into knowledge triplets for input into the knowledge
graph, for later reference by the planner.
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Typical Inter-layer Interaction Sequence

Figure 1: Inter-layer Interaction Example

This sequence demonstrates a complete closed loop from external events to execution feedback and then to
learning optimization; all communication is Signal, requiring no synchronization locks.

Summary

1. Clear responsibilities at different levels: Perception focuses on “information collection,” planning is
responsible for “task decomposition,” decision-making emphasizes “resource scheduling,” execution
implements “result delivery,” and learning drives “continuous evolution.”

2. Signal connects upstream and downstream: A unified event format allows each layer to be hot-swappable
without disrupting global consistency.

3. Coordination between models and rules: Multiple technologies coexist, such as LLM with symbolic
planning, Bandit with MoE, AES-GCM with ZKP, achieving a three-dimensional balance of performance,
reliability, and compliance.

4. Continuous benefits: The learning layer feeds results back to decision-making and planning, forming a
spiral iteration that ensures the system becomes increasingly intelligent in an open world rather than
gradually failing.

With this role-layered design, DSN-AI can achieve efficient collaboration across different business domains
and trust boundaries, laying a solid framework for the future AI ecosystem that is open, multi-domain, and
multi-agent.

Task Flow and Signal Linking
In DSN-AI, “Task Flow” refers to the entire process sequence from user or system goals, through planning,
decision-making, execution, to result feedback; “Signal Linking” uses on-chain events to break this sequence
into several discrete, verifiable, and parallel stages, thereby constructing a workflow graph (Task Graph)
that is both observable and composable. This section details how the task flow achieves cross-platform
and cross-framework collaboration through Signal in five steps: “Modeling—Orchestration—Execution—
Monitoring—Fault Tolerance.”
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Task Flow Modeling: From Natural Language to Signal DAG

1. Goal Input

Users submit natural language goals through a dialog box, API, or scheduled trigger, such as: “Auto-
matically buy 0.1 BTC and text me when the BTC price drops below $90,000.”

2. Semantic Parsing

The LLM Planner combines domain vocabulary and knowledge graphs to decompose the goal into a
triplet of trigger conditions, action sequences, and constraints:

1 {
2 "trigger": "btc.price␣<␣90000",
3 "actions": ["trade.buy(btc,0.1)", "notify.sms(user)"],
4 "constraints": {"max_slippage":0.5}
5 }

3. Task Graph Generation

The Planner calls the LangGraph API to convert the above triples into a Directed Acyclic Graph (DAG):

• Node N1: sensor.btc_price

• Node N2: judge.condition_met

• Node N3: action.trade_buy

• Node N4: action.notify_sms

Edge relationship: N1 -> N2 -> {N3, N4}.

Each node corresponds to a future plan.step Signal, with attributes including node_id, type, next,
schema_hash, ttl, etc.

4. DAG On-Chain

The Planner uploads the entire DAG in CID format to decentralized storage like IPFS, and stores
{dag_cid, root_node, total_nodes} in the payload of the plan.generated Signal. This Signal becomes
the “root credential” for all subsequent subtasks.

Task Flow Orchestration: Topological Expansion Driven by Signal Router

1. Root Node Publishing

The Dispatcher parses plan.generated -> converts the first execution node N1 into a sensor.request
signal and publishes it.

2. Capability Discovery

Perception Agent A declares the capability sensor.btc_price in its CAP Signal, so the Dispatcher routes
the N1 Signal to A.

3. Dynamic Topology

When A listens to the BTC price update, it generates a sensor.update Signal; the Router reads its
metadata.node_id = N1, automatically activates the successor node N2, and updates the DAG state
(N1 completed -> N2 pending execution).

4. Forking Parallelism

If successor nodes appear with parallel forks (e.g., N3 & N4), the Router synchronously publishes two
independent action.requests. They can be processed in parallel by execution Agents from different
frameworks without blocking each other.
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Task Flow Execution: Transaction Guarantees through Multi-Agent Collaboration

1. Transaction Atomicity

For actions that need to be completed in one go (e.g., on-chain “flash loan -> exchange -> repayment” in
three steps), the Planner inserts a virtual node atomic_group in the DAG, with three subordinate nodes;
only after all subordinate nodes succeed does atomic_group publish a group.success signal, otherwise it
triggers a retry or rollback node.

2. State Writeback

After the execution Agent completes the task, it publishes action.completed / action.failed, where the
payload includes at least node_id, status, output_cid. The Router updates the DAG node status and
decides whether to trigger a retry strategy.

3. Long Transaction Heartbeat

For tasks running longer than TTL, the execution Agent must send an action.heartbeat signal every ∆t;
if the Dispatcher does not receive a heartbeat within two times ∆t, it marks the node as stalled and
triggers a backup Agent.

Task Flow Monitoring: Observability Combining On-Chain and Off-Chain

1. Global Trace ID

The Planner generates trace_id = keccak256(goal‖ts) in the plan.generated Signal; all subsequent signals
inherit the trace_id for easier log aggregation and retrieval.

2. On-Chain Metrics

• Completion Rate: Traverse DAG node status to calculate done/total.

• Average Latency: action.completed.timestamp - plan.generated.timestamp

• Failure Reasons: Aggregate by status_code.

3. Off-Chain Dashboard

Prometheus Agent subscribes to all Signals and writes to TSDB; Grafana creates a device topology
view to display node heat and bottleneck locations in real-time.

Task Flow Fault Tolerance: Rollback, Retry, and Compensation

1. Retry Strategy

The Planner can define retry = {max:3, backoff:“exp”} in the node metadata; the Router republishes
action.request based on failure count and backoff curve.

2. Backup Agent

If the execution Agent fails, the Dispatcher selects the next Agent from the backup address pool of the
same capability Topic, with an attempt=N+1 tag for reliability statistics in the learning layer.

3. Compensation Transactions

For tasks with external side effects that cannot be rolled back, the Planner additionally generates
compensate.* nodes; when the main action fails, the Router automatically triggers the compensation
node to perform the inverse operation, such as refunding tokens, deleting files, or rolling back inventory.

4. Chain Reorganization Handling

If a Rollup block is pruned by L1, the Dispatcher rolls back the DAG state by height and re-broadcasts
the last stable Signal of the affected nodes, ensuring idempotent execution of the upper-level logic.
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Example: Complete Signal Sequence for Cross-Chain Lightning Arbitrage

Figure 2: Cross-chain Lightning Arbitrage Signal Example

In the above sequence, the three steps of flash loan - exchange - repayment are managed by atomic_group;
any failure in any step will trigger atomic_group.failed and execute a compensation transaction. Each stage
of the entire arbitrage process can be audited and replayed on-chain.

Performance and Governance Outlook

1. Parallelism Limit

The maximum parallelism of the DAG ≈ the number of simultaneously active nodes; experiments show
that in a scenario with 100 execution agents and 10,000 parallel nodes, the Dispatcher CPU utilization
is < 60%, with a median latency of 450 ms.

2. Adaptive Batching

The Router can dynamically adjust the batch processing window by Topic: in low TPS scenarios, it
maintains real-time processing, while in high TPS scenarios, batching 50-100 signals reduces on-chain
transaction fees.

3. Economic Incentives

For “high-value but high-computational” nodes, the Planner can add a bounty field to the meta-
data, triggering micropayments to agents upon successful execution, thereby building a self-consistent
computational power market.

4. Autonomous Governance

In the future, the root node of the DAG can be submitted to a DAO proposal contract, and after
community multi-signature merging, workflows can be released to achieve large-scale collaboration and
auditing across organizations.

By breaking down task flows into standard Signal chains, DSN-AI transforms large complex tasks into verifiable,
parallelizable, and economically incentivized event micro-units; then, through the dynamic orchestration
of Planner-Router-Dispatcher, it forms a self-healing, evolvable AI workflow network. This design inherits
the transparency and immutability of blockchain while absorbing the elasticity and high throughput of
cloud-native event-driven systems, laying a solid foundation for the large-scale implementation of future
multi-agent systems.
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Cross-Platform Collaboration Model
Cross-platform collaboration is a necessary condition for the implementation of Agentic AI: perception sources
are dispersed across the Internet of Things and Web2 APIs, computational power and model hosting are in
multi-cloud environments, key states are stored on the blockchain, while some privacy logic must be executed
locally or in private data centers. DSN-AI enables seamless collaboration of these heterogeneous resources
through a unified Signal protocol.

Collaboration Models

1. Cloud-to-Cloud

Agents in multiple public or private clouds exchange events via the DSN-AI Signal bus. For example,
after the LLM Planner on Azure generates a plan, it pushes the action Signal to AWS Lambda for
image processing; once processing is complete, it writes back the result Signal to trigger GCP BigQuery
for storage. The cross-cloud invocation layer only requires the Router to forward, eliminating the need
for VPC peering or complex IAM configurations.

2. Cloud-to-Chain

Traditional cloud services call smart contracts on the blockchain or read blockchain data. Perception
agents listen to DeFi market conditions in the cloud, and when they detect significant liquidation risks,
they publish a risk.alert Signal; the on-chain contract agent subscribes and automatically adjusts the
collateral rate. The on-chain contract result writes back action.completed, allowing the cloud Planner
to continue deciding the next action.

3. Chain-to-Chain

State updates are transmitted between different blockchains, avoiding multiple sets of cross-chain
bridging logic. For instance, user actions on the BNB Chain are transmitted via Signal to execution
agents on the B2 Rollup, which are authorized by the Signal to complete orders in the Bitcoin NFT
protocol. The DSN-AI Router connects lightweight clients of both chains, adding an extra signature
verification layer for cross-chain security.

4. Cloud-to-Edge

Edge devices (such as factory robots, smart cameras) typically operate in internal networks or weak
network environments. They run lightweight execution agents that only provide HTTP/WebSocket
Endpoints. The Router decides whether to issue action.request after detecting the Endpoint’s QoS/WAN
reachability; if the network is poor, Signals can be cached at the local gateway and operate in a local
closed loop, with batch returns after the edge completes.

5. Private-to-Public

In scenarios like healthcare and finance, data must remain in private data centers. Private agents publish
encrypted Signals through Proxy Re-Encryption; public planners can only use the summarized data
after payment and obtaining decryption rights, then return de-identified decision results. Throughout
the process, plaintext never leaves the private domain.

6. Local-to-Cloud Desktop/Device

Small LLMs or tools running on personal computers or mobile phones can monitor changes in personal
privacy directories (such as new screenshots) to generate Signals for upload. After the cloud’s large
model completes inference, it returns a summary with action.completed Signal, and the local agent
decides whether to display it based on ACL. This protects privacy while leveraging the powerful model
capabilities on the cloud side.

The cross-platform collaboration model brings Agentic AI a geography-independent, cloud vendor-locked, and
privacy-controllable operational form. The Signal layer of DSN-AI ensures security and verifiability while
abstracting complex networks and permission management into declarable, routable, and economically
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Technical Implementation Framework
LangGraph: Event Graph Orchestration - The “Workflow Engine” of DSN-AI
LangGraph is a low-level workflow runtime open-sourced by the LangChain team at the end of 2024. It
replaces the traditional Chain serial method with a “node-event-edge” triadic paradigm, inherently supporting
asynchronous event-driven processes, parallel branches, failure rollbacks, and persistent checkpoints, making
it particularly suitable as the Signal-to-Signal orchestration engine for DSN-AI. The following will elaborate
on five aspects: conceptual model, core API, operating mechanism, fault tolerance strategy, and integration
with the Signal network.

1. Conceptual Model

Component Corresponding Meaning Mapped in DSN-AI

EventNode Atomic computing unit that can
be triggered by events

Various nodes such as
perception, judgment, action,
compensation, etc.

Edge Directed Dependency
(Condition / Order)

sensor.update ->
judge.condition_met

GraphState Global Key-Value State Table Saves DAG node execution
status and retry count

Router Select branch based on event
content

MoE Dispatcher acts as a
dynamic Router

Nodes can declare Input Schema and Output Schema, and LangGraph performs type checking at
runtime; this perfectly aligns with the schema_hash of DSN-AI.

2. Core API

1 from langgraph.graph import StateGraph
2

3 from langgraph.nodes import RunnableNode
4

5 graph = StateGraph()
6

7 @graph.node("N1_sensor_btc")
8

9 def get_btc_price(state):
10

11 ...
12

13 return {"price": price}
14

15 @graph.node("N2_judge")
16

17 def judge(state):
18

19 if state["price"] < 90000:
20

21 return {"trigger": True}
22

23 return {"trigger": False}
24

25 graph.edge("N1_sensor_btc", "N2_judge")
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26

27 # Conditional Branching
28

29 graph.edge("N2_judge", "N3_trade", condition=lambda s: s["trigger"])
30

31 graph.edge("N2_judge", "N4_sleep", condition=lambda s: not s["trigger"])
32

33 graph.compile("ArbitrageFlow")

Features

• Declarative dependencies: Declare nodes using function decorators without the need to write
explicit scheduling logic.

• Conditional edges: Edges can bind boolean conditions or routers; only subgraphs that meet the
conditions are expanded when triggered.

• Persistence: Returns FlowDefinition after compilation, which can be serialized to JSON/YAML
and put on-chain.

3. Operating Mechanism

1) Event-driven

Each node implements call(state), and the LangGraph engine listens to the input queue (in DSN-AI,
this is the Signal Bus). When the corresponding signal arrives, it writes the payload into the state
and asynchronously executes the node function.

2) State snapshot

After execution, the output is written back to GraphState and persisted to backend storage
(Redis/PostgreSQL/IPFS). If the system crashes, it can be restored from the last snapshot.

3) Parallel scheduling

Nodes at the same level without dependencies are executed in parallel using a thread pool /
asyncio.gather; node functions can return AsyncIterator to stream intermediate results.

4. Fault tolerance and retry

Scene LangGraph Mechanism DSN-AI Integration

Node Exception Automatically capture
exceptions and write to
state[“_error”]

Publish action.failed signal;
Router can retry after reading

Timeout (graph.node?)(timeout=30)
declaration

Send action.timeout after
timeout, Planner decides to
degrade

Idempotent Replay Nodes can define cache_key;
repeated input directly returns
cached output

Ensures task idempotence for
chain reorganization rollback
scenarios

5. Deep integration with the Signal network
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Step LangGraph End Signal End

Node Trigger graph.emit(“N1_sensor_btc”) Router ->
_type=“sensor.request”

Node Completed graph.update(state) Execute Agent ->
_type=“sensor.update”

Condition Evaluation edge(condition=. . . ) judge.condition_met Signal

Dynamic Router Edge
(router=llm_router)

MoE Dispatcher generates
router.choice

Failure Rollback state[“_error”] & Compensating
Node

Compensate.* Signal

With this mapping, LangGraph <---> Signal forms a closed loop: Graph describes the logical topology,
while Signal is responsible for actual transmission and contract constraints; even when running across
clouds, chains, and edges, it can synchronize to ensure consistency.

6. Advantages of LangGraph

• Strong Typing + Persistence: Node I/O is validated through schema checks, maintaining consistency
with schema_hash; GraphState snapshots allow tasks to be recoverable in large-scale distributed
environments.

• Naturally Parallel: The combination of dependency edges and event-driven architecture allows
throughput to scale linearly with the number of nodes, accommodating DSN-AI’s demand for tens
of thousands of parallel Signals.

• Flexible Routing: Any Python function can be inserted as a Router, including LLMs, Bandits, and
rule engines; integrates with MoE Dispatcher with zero friction.

• Friendly Debugging: LangGraph provides a visual DAG and real-time node logs, combined with an
on-chain Signal browser, enabling developers to trace tasks end-to-end.

• Easy Governance: FlowDefinition can be hashed and stored on-chain, signed and deployed after
team review, meeting compliance audit objectives.

By building with LangGraph, DSN-AI has gained highly declarative event graph orchestration capabilities;
it abstracts business logic into a renderable, verifiable, and governable DAG, making cross-platform and
cross-framework agent collaboration simple, intuitive, and secure.

LangChain Tools: Tool Encapsulation and Invocation - The “Instruction Execution
Layer” of DSN-AI
In the technology stack of DSN-AI, LangChain Tools play the role of “capability glue”: it wraps external APIs,
database queries, on-chain transactions, shell scripts, and even local Python functions into a unified form of
Tool, available for invocation by LLM Planner, MoE Router, or execution Agents. With Tools, any Action
can be described through Signal and triggered remotely, achieving true cross-framework and cross-platform
capability reuse.

1. Tool Abstract Model

Field Meaning Description

name Unique Tool Name Also serves as a subdivision of
_type
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Field Meaning Description

description Natural language description For LLM understanding in
zero-shot scenarios

args_schema Pydantic / JSONSchema Defines input parameter types,
optional/required, value range

return_schema Same as above Output structured result;
defaults to string if empty

fn Python Callable Execution subject; can be
synchronous/asynchronous

validators Pre-check hook Perform ACL and range checks
on parameters

postprocessors Post-processing hooks Result formatting, error
translation to Signal

Signal Mapping:

• When called, the Planner generates action.request Signal, where payload.tool = name, payload.args
= {. . . }

• After the tool execution, it returns action.completed or action.failed, and payload.result corresponds
to return_schema

2. Tool Type

Type Scene Typical Implementation

RESTTool Call Web2 API requests / httpx; built-in retry,
rate limiting

Blockchain Tool On-chain Transactions, Queries web3.py, eth_account, bitcoinlib

DBTool SQL / NoSQL Precompiled SQL Templates +
Connection Pool

SysTool System Script / Bash subprocess; specify working
directory, sandbox

AITool Model Inference HuggingFace Pipeline /
TensorRT Inference

LocalTool Pure Python Function Business Algorithm, CSV
Processing

CompositeTool Tool Combination Multi-step Process +
Intermediate Cache

3. Tool Encapsulation Paradigm

1 from langchain.tools import StructuredTool
2 from pydantic import BaseModel
3

4 class SwapArgs(BaseModel):
5 token_in: str
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6 token_out: str
7 amount: float
8 slippage: float = 0.5
9

10 def swap_tokens(args: SwapArgs) -> dict:
11 tx_hash = dex_swap(args.token_in, args.token_out, args.amount, args.slippage)
12 return {"tx_hash": tx_hash}
13

14 SwapTool = StructuredTool.from_function(
15 name="dex_swap",
16 description="Swap_in_DEX",
17 args_schema=SwapArgs,
18 return_schema={"tx_hash": "str"},
19 func=swap_tokens,
20 retries=2,
21 timeout=15,
22 )

Advantages:

• LLM can generate precise calls based on description and args_schema.

• Function failure retries and timeouts automatically throw exceptions to action.failed.

4. Tool Registration and Discovery

• Static Registration

After importing at the Python module level, add to the global TOOL_REGISTRY. The Planner
traverses the registrations during initialization.

• Dynamic Discovery

The executing Agent packages tool metadata into CAP.Tool Signal at startup; the Dispatcher
updates the local cache -> Planner queries the Topic->Tool mapping table.

• Version Control

Append (v1?), (v2?) to the name; the Planner can specify the version in the Prompt, or the
Router can automatically roll back based on schema_hash.

5. Tool Call Safety

Risk Protective Measures

Parameter Injection Pydantic Schema Automatic Strong Type
Validation; Custom Rules for Validators

Resource Abuse Unified rate limiting for timeout, retries, and
rate_limit attributes; write
action.failed(code=429) when exceeding budget.

Sensitive API Key Leak Place credentials in local environment variables or
DSN-AI private domain Secret; do not enter Signal

Arbitrary Code Execution SysTool runs by default on Docker / gVisor; must
explicitly set allow_shell=True to allow

6. Deep Mapping of Tool and Signal
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LangChain Field Signal Field Description

name payload.tool Used for downstream execution
of Agent routing

args_schema schema_hash Pydantic JSON Schema Hash

args payload.args Direct Serialization

return_schema schema_hash_result Convenient for LLM to
understand output structure

Exception Payload Error + Status: Failed Error Trace Logged

Advantages: Full-chain traceable tool invocation graph; the same tool can interoperate across cloud
instances by simply sharing schema_hash.

7. Advanced Features

1) Tool Gang

Assemble multiple Tools into a CompositeTool based on dependency chains, such as “Download ->
Unzip -> OCR -> Vectorization.” This reduces the incremental reasoning cost for th e Planner.

2) Function Calling Mode (OpenAI Tools)

When calling the OpenAI Function Calling API, args_schema can be directly used as parameters;
the LLM automatically generates JSON calls, and LangChain converts them into Signals.

3) Caching and Idempotency

Declare cache_key = keccak(args) in Tool Metadata; the Dispatcher searches the action.completed
history; if a match is found, it directly returns the result, avoiding duplicate Gas costs.

4) On-chain Payments

Combine paid Signals by including price and pay_to in the tool metadata; validate payment
contract events before Tool execution.

8. Case Study: Cross-chain Flash Loan Toolchain

Tool Function Input Output

flash_loan Borrow BTC for 30 seconds. token, amount tx_hash

swap_dex Asset exchange path, amount amount_out

repay_loan Repay the flash loan token, amount tx_hash

The Planner generates action.request in three steps through LLM, executing the Agent in a sequential
call to tools; failure immediately compensates with concurrent action.failed Signal. The entire process
only requires LLM to focus on high-level descriptions, without needing to manually write RPC details.

LangChain Tools provide DSN-AI with a unified capability encapsulation that is “orchestration-agnostic,
framework-agnostic, and verifiable by signature.” Through strict Schema descriptions, built-in security hooks,
and Signal mapping mechanisms, tool calls become traceable and governable data flows on-chain, rather than
scattered API patches. This reduces the complexity of LLM’s Prompts and allows for the free combination of
resource calls across teams, clouds, and chains within a secure boundary—ultimately achieving the “capability
as a plugin, plugin as an economy” of Agentic AI.
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MoE Dispatcher: Expert Routing and Strategy Allocation—The “Brain” of
DSN-AI
The Mixture-of-Experts (MoE) mechanism allows a router to activate only a small number of “expert”
subnetworks during inference, thereby enhancing model capacity and domain specialization without increasing
computational costs.

In DSN-AI, the MoE Dispatcher is positioned at the intersection of “planning -> decision-making,” responsible
for selecting the most suitable expert chain (LLM, tool sequence, or external Agent) for each sub-task based
on the context of the Signal. Its core objectives are:

1. Intelligent Routing: Dynamically assign experts for tasks in different domains and with different
constraints to improve decision quality.

2. Sparse Computation: Activate only k experts during each inference, with inference latency approximately
equal to that of a single expert model.

3. Learnable Strategies: Adjust routing probabilities based on execution results (action.completed / failed)
to achieve continuous self-adaptation.

Architecture Overview

Figure 3: MoE Architecture

• Router Network: Lightweight gating (200 K-2 M parameters), input task embedding -> output expert
weights.

• Expert Pool: Can mix various backends: Mistral-Mixtral-8×7B, OpenAI GPT-4o-code, community
Fin-GPT-MoE, and even external API-LLM.

• Aggregator: Token-level selection (Sparse Attention) or Task-level selection (Top-1).

Technical Principles

1. Routing function (Gate)

pi = softmax(W · h + b)i, Experts∗ = Topk(p)
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• h: Task embedding, derived from Signal payload + historical context (Average Pooling).

• W, b: Router parameters, experts can be frozen during fine-tuning, only W, b are updated.

• Sparse activation: Select k ≪ N experts (commonly k = 2), set the remaining weights to zero.

2. Load balancing loss

To prevent “popular experts” from being frequently selected, add the Load-Balancing Loss proposed by
Switch-Transformer:

LLB = N ·
∑

i

(
ci∑
j cj

)
·

(
σi∑
j σj

)

ci: Number of samples selected by the i-th expert; σi: Corresponding routing probability sum. The
optimization goal is to match the selection frequency with the expected probability.

3. Training strategy

1) Pre-training phase

• Starting point: Open-source MoE LLM (Mixtral-8×7B), Router has initially differentiated
domains.

• Continue SFT on multi-domain instruction data, freeze expert FFN, only train the routing
layer.

2) Online fine-tuning

• Collect action.completed success/failure labels -> calculate reward

r

• Use REINFORCE:

∇θJ = E[(r − b)∇θ log pθ(E∗)]

b is the baseline (moving average), θ is the router parameters.

• Aggregate gradients every M tasks for asynchronous updates.

3) Temperature scheduling

• Gradually reduce the softmax temperature T as the model converges, promoting deterministic
selection and reducing inference jitter.

Implementation key points

Component
Recommended Library /
Technology Description

Router PyTorch + deepspeed.moe.gating Built-in load balancing loss and
channel parallelism

Expert vLLM (Mixtral 8x7B), OpenAI
Proxy

vLLM offers high-throughput
Sparse Kernel

Token Embed Sentence Transformers Retrieve Signal Payload as a
256-Dimensional Vector
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Component
Recommended Library /
Technology Description

Task Embed Custom Pydantic -> JSON ->
Emb.

Parameter Name, Schema Hash
Embedded Together

Aggregation Operator Top-k Gate + WeightedSum Same as Switch-Transformer
paper configuration

Online Feedback Redis Streams / Kafka Collect router.choice, action.*

Future Expansion

1. Hierarchical MoE: Router-of-Routers, dispatching domains in the first layer and selecting experts within
the domain in the second layer.

2. Edge-Cloud Collaboration: Pre-deploy micro-routers on edge devices to handle local tasks, with the
cloud Router taking over high-value decisions.

3. Federated Routing Learning: Collect private domain feedback within organizations, aggregate routing
gradients using FedAvg, and protect data privacy.

The MoE Dispatcher empowers DSN-AI with precise scheduling capabilities for the expert chain through
the combined approach of “sparse activation + dynamic routing + online reinforcement,” reducing inference
latency while self-optimizing through continuous Signal feedback, ultimately forming a decision neural network
that fosters human-machine symbiosis and continuous improvement.

Signal: Signal-Driven on the Chain
For details on Signal-Driven on the chain, refer to the “Signal Network Model” section.

Application Cases
Decentralized Cross-Chain Arbitrage and Market Making (DeFi Execution Mesh)
Real-time capture of price imbalances across different blockchain networks, automatically executing flash
loans, cross-chain exchanges, and market-making rebalancing, with profits returned to liquidity providers.

Signal Link:

1. sensor.price_feed: Perception Agent listens to DEX quotes on various chains.

2. judge.arb_opportunity: LLM Planner determines if the price difference > threshold.

3. router.choice: MoE Dispatcher selects the optimal cross-chain path and liquidity source.

4. action.flash_loan, action.swap, action.bridge, action.repay: Execution Agent completes tasks sequentially
or in parallel.

5. action.completed: Profits are aggregated and written to the chain.

6. learn.reward: Rewards are recorded to optimize routing probabilities.

Advantages:

• On-chain anchoring + flash loan transaction records ensure fair and tamper-proof profit distribution.

• MoE routing dynamically switches DEX/bridges based on real-time success rates.

• Liquidity providers can audit each arbitrage, reducing trust costs.
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Privacy-Preserving Medical Imaging Inference Network (Privacy-Preserving Med-
AI)
Confidential CT/MRI images from hospitals need to be pre-processed in a private domain; the cloud’s large
model is responsible for diagnosis; results are then anonymized and written to the blockchain for secondary
mining by research institutions.

Signal Link:

1. sensor.image_ready: Edge gateway detects new DICOM images.

2. action.preprocess_local: Local GPU Agent de-identifies + compresses -> generates encrypted CID.

3. action.diagnose_cloud (paid Signal): Uploads ciphertext -> cloud’s large model infers.

4. action.completed: Returns probability distribution; encrypted write to the chain.

5. learn.reward: Clinical feedback serves as decision rewards.

Advantages:

• AES-GCM+PRE ensures original images do not leave the hospital; on-chain records of inference
summaries facilitate compliance audits.

• The “image as a service” business model is realized through paid Signal, allowing decryption only after
payment.

• Hospitals can replace local Agents at any time without modifying cloud logic.

Real-Time Risk Control in Global Supply Chains (Global Supply-Chain Risk
Monitor)
Large manufacturers track multi-source data from sea freight, rail, airports, customs, etc., to predict delays
and tariff risks, automatically adjusting procurement and storage strategies.

Signal Link:

1. sensor.logistics_feed: Multi-source streams from various countries’ EDI, AIS, satellite images, etc.

2. plan.generated: LLM generates risk control DAG (delay prediction -> tariff simulation -> restocking
suggestions).

3. router.choice: Selects AI prediction experts based on cargo type (weather, port congestion, government
affairs).

4. action.update_erp: Execution Agent writes to SAP / Oracle ERP.

5. action.notify_sms / email: Multi-channel alerts to suppliers.

6. learn.reward: Rewards calculated based on actual delivery timeliness.

Advantages:

• Signals are tamper-proof, meeting cross-border compliance audits.

• DAG can be recalculated locally; delays at one logistics node do not affect others.

• Paid Signal rewards third-party data sources, such as port IoT operators.

Open Source Research Collaboration DAO (Research-DAO Workflow)
Global researchers collaborate through the Signal network to select topics, annotate data, conduct experiments,
review, write papers, and allocate contribution rewards.

Signal Links:
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1. plan.generated: Research proposals approved by community voting are recorded on-chain.

2. action.annotate_data: Crowdsourced annotators take on tasks; submit action.completed Signal.

3. router.choice: Dispatcher evaluates annotation quality to allocate the next batch.

4. action.train_model, action.evaluate: GPU pool Agents train in parallel.

5. learn.reward: Achievement NFT minting & reward distribution.

Advantages:

• All tasks, contributions, and rewards are transparently on-chain.

• Anyone can run an Agent to participate in annotation/training and earn contribution Tokens.

• MoE Router automatically allocates high-quality contributors based on historical accuracy.

Smart City Multimodal Traffic Scheduling (Smart-City Traffic Mesh)
Real-time scheduling that integrates public transport, taxis, shared bicycles, and autonomous vehicles to
reduce congestion and carbon emissions.

Signal Links:

1. sensor.traffic_cam, sensor.bus_gps: Camera + GPS data streams.

2. plan.generated: Planner outputs a task graph for “traffic light control + vehicle rerouting + dynamic
pricing.”

3. action.control_signal: Edge roadside unit Agents adjust traffic light durations.

4. action.rebalance_fleet: Autonomous vehicle/bicycle operators receive instructions.

5. action.price_update: Shared mobility app updates pricing.

6. router.choice & learn.reward: Routing optimization based on delay and congestion index.

Advantages:

• Each transportation operator retains private data, sharing only encrypted metrics Signal -> protecting
trade secrets.

• On-chain records of scheduling strategies allow for government oversight and traceability.

• MoE Dispatcher dynamically adjusts parameters based on expert models for weather/events/holidays.

The above scenarios cover five major fields: finance, healthcare, supply chain, research, and smart cities, fully
demonstrating the unique advantages of DSN-AI in cross-platform collaboration, strong security auditing,
economic incentives, and privacy protection. It also illustrates the universal adaptability of the Signal-Driven
architecture for heterogeneous Agent networks. As the B2 Network ecosystem and MoE Dispatcher technology
mature, more high-value scenarios will be rapidly implemented in the real world.

Roadmap Outlook
In order to transition the Decentralized Signal-Driven Network for Modular and Agentic AI (DSN-AI) from
prototype to scalable applications across multiple industries, B2 Network has planned the following three
major directions for subsequent development based on existing Rollup and Signal protocols, focusing on
addressing three core pain points: developer entry, ecological prosperity, and cross-language interoperability.

1. Multi-language Signal SDK

Allow developers who create Agents using any technology stack and framework to connect with “one line of
code.”
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2. Open Agent Platform (B2 Signal Hub)

The platform includes:

• MoE Decision Maker: Hosts Mixtral-MoE + Router API, allowing developers to upload self-
trained Expert weights and accept A/B bidding scheduling through staking. Provides users with a
“scheduling brain.”

• Modular Basic Agent: A basic Agent pre-integrated with Signal, ready to use out of the box,
providing users with basic functionalities and continuously iterating updates.

• Agent / Signal Registry: Provides developers with registration and query capabilities for Agents and
Signals, supporting registration of Agents and Signals across different platforms and frameworks,
as well as paid Signal registration.

• Signal Explorer: Supports searching, subscribing to, and using Signals; provides detailed information
on Signals that have been issued, similar to a blockchain explorer.

3. Developer & Governance Channel

1) Multi-level Open API

• Public API: Subscribe to public Topics, browse Signals, query expert statistics.

• Partner API: High TPS WebSocket, batch Signal publishing; requires staking.

• Admin API: DAO governance contract calls, used to freeze malicious Agents or adjust Gas fee
rates.

2) Plug-in/SDK Store

• VS Code & JetBrains Plugins: Support for .signalschema syntax highlighting and automatic
hashing.

• Figma Plugin: Allows insertion of process Signals into interactive prototypes, placeholder UI.

3) DAO Governance

• Proposal Model: Any Token holder can propose to add new type namespaces or upgrade
protocol versions.

• Dual-track Voting: Technical committee (> 2/3 expert weight) + community Token weight, to
prevent external attacks.

• Staking and Forfeiture: Registration of Agents must lock staking, and once improper behavior
(high failure rate, malicious charging) is detected, penalties will be immediately imposed.

Summary
Decentralized Signal-Driven Network (DSN-AI), using on-chain Signal as a unified communication primitive,
provides unprecedented modularity, trustworthiness, and scalability for cross-platform Agentic AI. Its core
advantages can be summarized in the following five points:

1. Strong decoupling and true modularity. Signal splits perception, planning, decision-making, execution,
and learning into independent event units through a “type + schema hash + signature” three-part
contract. Any agent can plug and play as long as it follows the standards, greatly reducing collaboration
costs across frameworks, languages, and trust domains.

2. On-chain verifiability and traceability. Each Signal is written in seconds on B2 Rollup and anchored in
minutes on Bitcoin L1, combined with ECDSA signatures and Merkle proofs to provide an immutable
execution trace. Corporate compliance, scientific audits, and fund settlements can all be completed on
the same secure baseline.
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3. Elastic scalability and high performance. Rollup high throughput + Blob TX cold-hot layering allows
daily operational costs for millions of event streams to be lower than traditional microservices. Bloom
Filter routing, multi-shard dispatchers, and MoE sparse activation ensure linear scaling with concurrency.

4. Dual protection of privacy and economy. Through AES-GCM, Proxy Re-Encryption, and ZK-SNARK,
confidential data is only decrypted by authorized parties; paid Signals embed micro-payment and
incentive logic, facilitating a “data/model as a service” market that drives ecological self-circulation.

5. Open governance and ecological flywheel. From multi-language SDKs and the SignalHub platform to
DAO staking governance, any individual or organization can contribute new expert models, tools, or
data sources and automatically share in the revenue from calls, forming a positive innovation flywheel.

As multi-chain interoperability, privacy computing, and high-performance inference hardware continue to
mature, the Signal network will become the de facto standard layer for cross-domain AI collaboration. We
foresee:

• Industry depth: High-value scenarios such as financial risk control, smart cities, industrial manufacturing,
and precision medicine will be the first to land, creating a new data economy through paid Signals.

• Technological integration: Derivative protocols like ZK-Signal, TEE-Signal, and Edge-Signal will
incorporate confidential computing, trusted execution, and edge intelligence into the same event bus.

• Governance evolution: Multi-layer DAOs based on staking and reputation will take over capability
audits, fee adjustments, and security responses, achieving true decentralized autonomy.

• Intelligent leap: MoE dispatchers, RLAIF online learning, and federated routing will drive the continuous
proliferation and upgrading of “expert pool” intelligences, providing global users with on-demand,
continuously evolving AI services.

In summary, the Signal network not only addresses the coupling and trust issues of current Agentic AI but
also lays the foundation for a verifiable, governable, and sustainable digital infrastructure for the future “smart
interconnected” society. With the joint participation of the B2 Network ecosystem and global developers,
DSN-AI is expected to become the next-generation public protocol layer connecting humans and autonomous
intelligences, ushering in an open, secure, and intelligent new era.
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